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by
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1. Introduction. The purpose of this paper is to describe the elements of
a new general formalism which seems to hold promise as a device for the
analysis of dynmamical systems with alternative inputs, much as the now
well-established subject of topological dynamics ([8]; [11], Chap. V)
can be regarded as, and was originally intended to be ([3], Chap. VII)
a device for the analysis of autonomous dynamical systems.

In this paper, Sections 2 and 3 present the basic definitions and a
few fundamental facts; beginning in Section 4, attention is concentrated
on optimization problems and the closely related question of the structure
of the boundary of the so-called reachable sets. This line of inquiry
culminates in the "generalized Jacobi condition" and its corollary, which
appear in the last section.

The present paper touches on only a few of the potentially interest-
ing and useful aspects of the theory of dynamical polysystems; questions
of stability and "controllability", for example, are not raised at all, and

must wait for discussion elsewhere.

* This research was supported in part by the United States Air Force through
the Air Force QOffice of Scientific Research, Office of Aerospace Research,
under Contract No. AF 49(638)-382; in part by National Aeronautics and Space
Administration under Contract No. NASr-l1l03; in part by Office of Naval Re-
search under Contract No. anr-§693(00); and in part by Army Ordnance Missile
Command under contract DA=36-034-ORD-3514 Z. Reproduction in whole or in
part is permitted for any purpose of the United States Government.



2. Basic Definitions. Throughout what follows, T denotes the real
line with its standard topology. A quadruple (E, &, 7, T) will be

called a dynamical polysystem (or, for short, a szstem) if E and ¢

¥*
are topological spaces, T:dPXEXT-E and T : E »T are continuous
maps, and Axioms I-IV below are satisfied. Here and subsequently o(e, t)
is an abbreviation for w(p, e, t), where @€ &, e € E, and t e T.

Each ¢, so0 regarded as a map from E X T to E, 1s continuous.

I. Forall @e¢ ® and e e E, ¢(e, 0) = e.

II. Forall o€ & ec€ E, and tl’ t2<-: T,

(p(cp(e, tl)J tg) = q)(e) tl + te)'

III. Forall ¢o€¢ & ecE, and te T, 7Tlple,t)] =7(e) + t.

IV. Forall P> P € ® and to € T, there exists a unique @ € @,

denoted by @l/%o/¢2, such that if t(e) = t then

o’

ple, t) = cpl(e, t) if t =0 and = q>2(e, t) if t 2 0.

This definition requires some comment. First, note that because of
the continuity of T and because of Axioms I and II, for each fixed @
the mapping m(p, « , +) : EXT »E is a dymamical system ([11], Chap. V)
or flow ([5]) on E; hence the term "polysystem". However, Axiom IIT
along with the assumed continuity of T prevents these separate dynamical
systems from being very interesting (see Proposition 3 and the comments

that follow it).

¥
Throughout this paper the topology of ¢ plays no role, and may there-
fore be taken to be discrete.
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The primary intended interpretation is as follows. T is a time
scale, E 1is the "event space" for some "plant". The typical element
of E, or event, is a state-with-associated-time; the time associated
with an event e is 7(e). @ is the set of "inputs" (or "controls")
@, each of which yields a certain terminal event ¢(e, t) for any given
initial event e and a time-interval of application of any given length
t. The roles of the first two axioms, which are common, should be clear.
Axiom IIT establishes a consistency between the two uses of the variable
t, 1n timing events and measuring duration. Axiom IV, which gives a
dynamical polysystem its coherence, asserts in effect that for any inputs
P and P, and any instant to’ there exists an input ¢ which acts
like Py before to and like ?s afterward.

The uniqueness requirement in Axiom IV may seem severe at first,
since ¢ = ¢l/%o/b2 appears to be constrained only on the set S, x T,

o}

where S, = {eeE :1(e) = tO]; but in fact Axiom IV leaves ¢ no
o

freedom whatever. The following proposition shows this in the most impor-

tant case.

Proposition 1. If ¢ = Ql/to/be and T(e) st sTt(e) +1t, then

?e, t) = 0,[py(e, t_ ~T()), T(e) 4t ~t_l.
Proof. Iet e, = o(e, t, - T7(e)). By Axiom IT,
ole, t) = (P(el; T(e) +t - to)'

Since T(e) + t - t, 2 0 by assumption and T(el) =t by Axiom ITI, it

follows that



T

q)(e) t) = q)g(el, T(e) +t - to)°

By a similar argument,
e =9 (e, £, ~1(e)).

Elimination of ey from the last two equations gives the required formula.
Another by-~product of Axiom IV is that it expresses the fact that a
dynamical polysystem is nonanticipatory ([10], p. 6) in the following sense:
if the system shifts from input P to input P, at time to, this has
no effect on events and their transformations that occur before the time
to. In other words, phenomens in the subspace {e € E : t(e) = to} with
the input @l/%o/be do not depend on @,. This may be verified by the
methods used to prove Proposition 1.
Two dynamical polysystems (Ei’ oy, My Ti) (i = 1,2) are isomorphic
if there exist homeomorphisms q : El <————>:E2, r @l <> ¢2,
§ : T <——>T, where s 1is order-preserving, such that

1T2(r(q)l), q(el)) S(t)) = q['n-l((pl’ el’ t)]

for all P € ] e, € El’ and t e T; and

1’ 1
T2q = 8T

1.

This relation 1s reflexive, symmetric, and transitive, as one readily

verifies.
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A system is said to be a state-time system if E =X x T, where
X 1s some topological "state" space, and T is the projection of E
onto T. As mentioned above, this may be regarded as the archetypal

situation.

Proposition 2. For every dynamical polysystem there exists an

isomorphic state-time system.

Proof. Iet (E,, &, m, T;) be the given system, and let
So = {e e E, @ T(e) = 0}. Put E2 = So X T and ®2 = ®l, and take r and
s to be the respective identity maps. Define q : El < >-E2 by

ale) = (mo(e, ~1(e)), t(e)), where 9, is any fixed element of 9.
Then q bhas an inverse gq given by Q(eo, t) = @O(eo, t). If T, 1is
defined by

myle, (e, t)), €1 = alm (e, dle,, ), t)]1 (e, € 8 )

and T, is taken to be the projection of E, onto T, then (E2, Oy Mps T2)
is a state-~time system isomorphic to (El, @l, s Tl), where the necessary
homeomorphisms may be teken to be the maps q, r, s Just described. The
verification of the details is omitted.

Proposition 2 shows that the decision to work with "events" e in
general, instead of the apparently less general state-time pairs (x, t),

is not essential; it is not even a bow toward relativity theory, but only

a metter of notatiomal convenience.
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Proposition 3. If (E, @, 7, T) is a dynamical polysystem, each

of the associated dynamical systems (flows) @(« , ») : EX T »E is

parallelizable,

Proof. According to [5], for example, this means that for any
¢ € & there exists a set SC E and a homeomorphism h from E onto
S X T such that (S, T) = E and h(p(e, t)) = (e, t) for every
e€ S, te T. In terms of the preceding proof, this may be accomplished
by taking S to be So’ choosing Qo to be the given ¢, and then
letting h be the corresponding map 4q.

Thus the individual dynamical systems ¢(+, <) can display none
of the recurrence properties with which topological dynsmics is usually
concerned; it is only collectively, especially as interrelated by Axiom IV,
that they become qualitatively interesting.

If teT, theset 5, ={ee B :T(e) =t} may be called the

t
t-section of E.

Proposition 4., In every dynamical polysystem, any two t-sections are

homeomorphic, and every t-section is closed in E.

Proof. If t, and t, are given, then for any fixed o, (e, te'tl)

is a homeomorphism from § onto §, ; its inverse is (-, t - t5).
1 2

Here again the details may be omitted. A t-section S is closed because

t
T is continuous and S, = T'l(t).

3. Theattainable and reachable sets. Henceforth everything will refer to
some fixed but otherwise unspecified dynamical polysystem (E, ¢, m, 7). If

eeE and teT, the set F(e, t)( E defined by
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Fle, t) =m(2, e, t) = {p(e, t) : 9 € @}

will be called the attainable set form e at t. The (positively)

reachable set from e is the set R(e) defined by

R(e) = (o, e, T+) = {p(e, t) :p€ & and t 2 0}.

(Here o (teT: b2 0}.) sSince there will be no occasion to use the
analogously defined negatively and bilaterally reachable sets in what
follows, the adverb "positively" will not be used.

Axiomatic theories based on close counterparts of F and R have
been developed by a number of writers, including Barba¥in ([1]), Zubov
([16], Chap. 4), and Roxin ([1%]). It is usual in these theories to make
assumptions that by no means follow from the conditions stated in Section 2.
For example, F(e, t) is often assumed to be closed or even compact. On
the other band, some of the propositions stated below have no general
analogues in the theories cited.

Clearly, R(e) = U(F(e, t) : t e T+}. A somewhat less superficial

observation is:

Proposition 5. If e € R(e), then R(el)(: R(e).

+
Proof. Iet e, ¢ R(e;). Then there exists a ¢, ¢ ¢ anda t,¢T

such that e2

1 = ¢l(e, tl). let @ = @l/(T(e) + tl)/ba. Then since

]

+
¢2(e1, te). Iikewise, there exist a ¢, ¢ ¢ anda %; €T

such that e

T(e) §T(e) +tl§’1’(e) +tl+t2,
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it follows from Proposition 1 that

Q(e: tl + tg) = ¢2[¢l(e’ tl)’ tz] = @e(el) t2) = 32:

whence e, € R(e).

2

Proposition 6. For every e € E and every te T, F(e, t) 1is

pathwise connected.

Proof. The proof will be described for the case +t € T+; there is
an analogous proof for the complementary case, ILet [el, 62}(: F(e, t),

where t 2 O. Then there exist @,, ¢, € @ such that

¢ (e, t) =, (i=1, 2).

Define p : [0, t] o E by
p(t') = q’z(q)l(e) t-t’)) t')'

The continuity of p follows from that of P and Pse From Axiom I

it follows that p(0) = e, and p(t) =e Finally, p([0, t])C F(e, t)

1

because for any t' e [0, t],

2.

p(t?) = ¢t'(e’ t) € F(e, t),

where @, = ¢l/(T(e) +t - t’)/bz. Thus p([0, t]) is a path joining e,

and e, in F(e, t).




9=

It is easy to show, without using Axiom IV, that R(e) is path-
wise connected for every e.

The following theorem, apparently first stated (in a narrower
context) by Roxin ([13], Theorem 3.1) is a strongly reminiscent of a
theorem about differential equations with nonunique solutions published
by Hukuhara in 1930 ([6]). I therefore call it the

Hukuhara-Roxin Theorem. If (e, t) € dR(e), then

(e, [0, t1) C OR(e). (Here X denotes the boundary of X 1in the sense

of general topology: X = X N E - X.)

Proof. Iet o(e, t) € OR(e). Note first that t 2 0; for in the
contrary case, f{e'e E : 7(e')<T(e)} would be a neighborhood of
(e, t) disjoint from R(e). Suppose that the conclusion of the theorem
is false, Then there exists a t'e [0, t) such that e! = g(e, t?)
belongs to the interior of R(e). By the continuity of ¢ in e, there

exists a neighborhood N of e = (e, t) such that
p(N, t* - t) C R(e).

Let 82 € N. Then

ey = ¢(e2, t? - t) € R(e).

Thus there exists a ¥ ¢ & such that for some tl z 0,

ey = v(e, tl).
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Note that by Axiom III, T(eB) = T(e2) +t' -t =1(e) + ¢ Let

1
9, = w/%(ei)/¢. Since

T(e) + Er(ez) ~1(e)] = T(ei) + (t - t?) 2 T(e5)

while

T(e) = T(e3) -t = T(ea),
it follows from Proposition 1 that

q’l(e’ T(eg) - T(e)) = q)(ez} O) = 62'

Hence, since T(e2) ~-1(e) = t, + (t -=t') 20, e,e R(e). Thus

2
NC R(e). This contradicts the assumption that e, € dR(e).

L. Optimization Problems. Within recent years rapidly rising interest
has attached to problems of optimal control, where the typical objective
is to choose an input (from a given set of alternatives) for a plant so
that the output satisfies certain side conditions while some numerical
"performance index" is maximized or minimized. (For the literature on this
subject through 1961, see [7].) Optimal control problems from a rather wide
class can be formulated in the context of dynamical polysystems « indeed,

this is the raison d'€tre for the latter - and the principal goals of the

remainder of this paper are to show how this can be done and to present some

fundamental facts about the resulting situation.
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One type of optimal control problem goes as follows. A dynamical
polysystem, representing some plant, is given. An initial event S
and a desired terminal event el[T(el) >‘r(eo)] are prescribed. Assume

that

Y=(peo:ole, (e) -1(e)) = e} £,

i.e., that e € R(eo). There is given a real-valued function L on E

(normally continuous and non-negative). Then

T(el)

c(e) = f L(o(e,, t))dt
T(eo)

defines a real functional on ¥. The problem is to find a ¢ (if it
exists) that minimizes C relative to ¥. The form of the problem can
be simplified by embedding the given system in a larger one. Iet

E' =E X R, where R is the real line, and define 7 : E ' X ® X T »E?
and 7' : E' 5T by

T(e)+t

T p, (e, ), t]1= [p(e, t), r+ [ L(p(e, t*))at*l,
T(e)

e, 1) = 1(e).

Then if I is well enough behaved to assure the required continuity of
T, (E', ¢ w', ') is a dymamical polysystem, and the original problem
is equivalent to: Iet e! = (eo, 0) and G = {e;} x R, and define
J:E' >R by J(e, r) =r; finda e © and a te T such that

¥ In this particular problem, t must be 7T(e,) = T(e ), so there is really
no problem of finding it, but this formulation %s used Por the sake of ready
generalizability.
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¢(el, t) € 6, and J attains a minimum at cp(e(;, t) relative to

1 1
Gy NR (eo).

Since many important types of optimal control problems can be re-
duced to the same form by such devices (cf. [12], Chap. I), a definition

based on this form should be useful. Accordingly, an optimization problem

for the system (E, &, m, T) is here defined to be a triple (eo, Gy, J),

where €, € E, G, 1is a nonempty subset of E, and J is a real-valued

1
function on Gl' A solution of such a problem is a pair (5, E) € ¢ X T+
such that 5(eo, t) € G, and

3loe,, )1 = 3(e))

o’

for all e, € G, N R(eo).
A desirable further generalization would be to replace e, by a non-
empty subset GO of E and to define an optimization problem and its
solutions accordingly. The material in sections 6-8 below is applicable,
with slight modifications, to this more general type of problem.
The following theorem is one form of a principle apparently first

stated by Bellman (for example, see [2], p. 83).

The Principle of Optimality. If (¢, t) 1s a solution of the optimiza-

tion problem (eo, Gys J), and e! = (-ﬁ(eo, t), where O st s3I, then
(@, T -t) 1is a solution of the optimization problem (e('), Gy, J).
A proof by contradiction 1s easily carried out with the aid of

Proposition 1.
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5. DNondegeneracy. The optimization problem (eo, Gy, J) will be
said to be degenerate if J attains a local minimum relative to Gl at
some point of Gl' (The meaning of the term here is similar to, but not
quite the same as that given by Rozonoer in [15].) It seems that most prac-
tical problems (for example, those obtained from an integral functional as
in Section L) are nondegenerate, but the "Splitting Theorem" below makes
possible the reduction, in a certain sense, of many optimization problems
to nondegenerate problems. Several preliminary lemmas of an elementary
topological character will be needed.

Iet J be a fixed real-valued function on a topological space X.

The symbol p(X) will denote the set of points of X at which J

attains a local minimum on X.

Iemma 1. If J 1is continuous, it is constant on any connected sub-
set of p(X).

There 1s a straightforward proof by contradiction.

Iemma 2. If J 1s continuous and X is locally arcwise connected,

pX - px)) = 4.

Proof. Suppose that x_ € p(X - p(X)). A fortlori, x_ e X - u(X).
There thus exists a neighborhood N of x_ such that for all x e N - u(X),
J(x) =z J(xo). It may be assumed that N is arcwise connected. Now let
x2 € NN p.(X). There exists an arc P Jjoining X, and x2 in N.
Suppose J(x,) < J(x_ ). Since u(x) 0 pC u(P), x, € u(P). By Lemm 1,

J 1is constant on the component of x, in u(P), which is a certain
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half-open or closed subarc XX, of P. Hence J(xl) = J(xg) < J(xo),
s0 X, # X . Then there are poinst x' of P - u(P) such that
Jx') < J(xo). However, P = u(P)C P - u(X)C N - p(X), so x'e N - u(X)
while J(x') < J(xo), and this contradicts the choice of N. Hence
J(xz) 2 J(xo); that is, J(x) =z J(xo) for all x e NN p(X). But then
J(x) 2 J(x ) forall xe N= (NN u(X)) U (X~ u(X)), so X, € u(x).
This again is a contradiction, and the lemma is proved.

Examples can be produced to show that if the assumption of local
arcwise connectedness is dropped from Iemma 2, the statement is not

generally true.

Splitting Theorem. If Gl 1s locally arcwise connected and J 1s

continuous, then any solution of the optimization problem (e Gy» J) 1is

0)

*
a solution of one or the other of the problems P, = (eo, Gy - p.(Gl), J)

and P, = (eo, w(Gy), J). The problem P, is nondegenerate, ani the pro-

1
blem P2 is discrete in the sense that J is constant on components of
the "target" u((}l), 80 to find a solution of P, it is sufficient to

seek out the component K (if it exists) of “(Gl) that intersects
R(eo) for which the assoclated value of J 1is least, and then find any
(p, t) € ¢ x 7" such that q>(eo, t) € K.

lemmas 1 and 2 give everything needed for the proof of this theorem
that does not follow from the definition of a solution and very simple
considerations.

The splitting theorem, together with the previous observation about
the frequency of occurrence of nondegenerate problems, makes the appearance

of nondegeneracy assumptions in subsequent theorems quite unobjectionable.

* 1 u(e )is @ or G,, one or the other of the problems P, and P

evaporates and the statemént is trivig]. * .
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6. The Principle of Optimal Evolution. The following necessary

condition for optimality was formulated and proved by Halkin ([9]) in

a more restricted context. He called it

The Principle of Optimal Evolution. If (P, t) is a solution of

a nondegenerate optimization problem (eo, Gy, J), ‘then
5(60, [o, :E]) C aR(eo)'

Proof. Consider e, =o¢(e , t). If e; 4 oR(e ), R(e)) 1is a neigh-
borhood of e;, 8o by the assumed nondegeneracy there exists an
el €GN R(eo) such that J(ei) < J(el).
that (9, t) is a solution of (ey» Gy J). Thus e, € dR(e ). The rest

This contradicts the assumption

follows from the Hukuhara-Roxin Theorem.
This principle locates the center of interest, as far as nondegenerate
optimization problems are concerned, in the boundary of R(eo). The

remainder of the paper 1s therefore concerned with the structure of this set.

Te Conjggate Events,

Proposition 7. For every t z 0, oF(e, t) C dR(e), where

OF(e, t) denctes the boundary of F(e, t) relative to the t-section in
which it lies, namely ST(e) £t
The simple proof, which is omitted, is based on the observation

that F(e, t) = R(e) n sT(e) + ¢

Thus U {dF(e, t) : t 2 0} C 3R(e), where the two Jd's are to be

interpreted appropriately. Equality does not hold in general, so it is
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impossible without further assumptions to draw the highly desirable con-
clusion that if (@, t) 1is a solution of a nondegenerate optimization
problem (eo, Gy J), ‘then 5(eo, t) € aF(eo, t) for all te [0, Tl.

In order to get nearer to this conclusion, it will be assumed

henceforth that E is a metric space (with metric p), amnd that the

following special continuity requirement is satisfied: for every e € E

there exist a neighborhood N of e and a positive real number 7 such
that the maps ¢(+, *) (9 € ¢) are uniformly equicontinuous on

N x [-n, nl.
Propositions 8, 9, and 10 are in effect lemmas.

Proposition 8. For any e, € E and & >0, there existsa © >0

such that for all ¢ € ¢ and all e € E such that p(el, e) <8,

p[el: o(e, T(el) -t(e))] <&,

Proof. By the special continuity assumption, there exist a neighbor-

hood N of e an 1 >0, and a 61 >0 such that

l}
(1) for all ¢ € ¢, plo(e?, t), o(e, t)I<t if

e, e' e N3 |t| s n; and p(e?, e) < 5.

It may be assumed that & 1is so small that

(2) B(e, e)C N and & <n;

Lere B(e, €) denotes the open ball of center e, and radius T in E.

Having settled (2), one may go on to assume that
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(3) 8 < £.

By the special continuity again, there exists a 82 >0 such that

() 5, < ¢€ 81

and

(5) forall 9e @& p(p(ey, t), ;) <3 5 if [t] < 8,

Since T 1s continuous at e there exists a ©® > (0 such that

l,

(6) 8 <8,
and
(1) [t(e) - T(el)l <g, Iif p(e, &) <.

Thus & has the required properties. 1In fact, for any ¢ € & and any

e € Ble,, B), lt(e) - T(el)l <&, by (T). Therefore if e, = ¢(e;, 7(e) -
'r(el)), it follows from (5) that

(8) p(ee, e;) <3 5.

Since p(e, el) <8< 8, <is (8) implies

17
(9) ple,y €) < 8,.
Also, by (8), efe, el) <8, (3), and (2),

ee€ N and ege N.
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since |t(e) - T(e;)| <&, <n, 1t now follows from (1) that

p[cp(ezJ T(el) "T(e))) CP(C, T(el) - T(e)) < ¢ .

But cp(e2, T(eq) = t(e)) = e;; hence

Ce.
-

p[el, T(e, 'r(el) -1(e))] <

as was to be shown.

Proposition 9. If e, € int F(e, t) (t 2 0), where "int" denotes

the interior relative to the t-section S

T(e)4t that contains F(e, t),

then there exists a 8 >0 such that

(eeE :p(e, e)) <b and t(e) 2 T(el)}C R(e).

Proof. Iet e, € int F(e, t). Then there exists an ¢ >0 such

that

Bey €) 08y C Fle, ).

T(e
Iet B8 correspond to & as in Proposition 8. Then if e, € B(el, 8), @
is any fixed element of ¢, and ey = qa(ez, T(eq) = T(ez)), Proposition 8
gives e; e B(e;, &). Since also T(e5) = 'r(el), e € F(e, t);
say e; = ¢,(e, t) where ¢, € §. Now let Py = ¢/ (ey)/@. If

-r(eg) 2 'r(el)[ 2 1(e)], Proposition 1 gives
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Da(e, T(ep)) = 0[9, (e, T(e)) = 7(e)), T(ey) = T(ey)]

= @(eB, 1(e,) = 7(ey)) = e

Thus e, € R(e), as needed.

Proposition 10. If e € E and e, € OR(e), then

e, € F(e, T(El) - 1(e)).
Hence JR(e) C U(F(e, t) : t = 0}.

Proof. [The closure indicated in the proposition may be interpreted

as that relative to E or that relative to ST& because this subw

e)+t?
space is closed (Proposition 4).] Iet e ¢ E and e € dR(e). Iet
¢ >0, and choose & as in Proposition 8. For some (9, t) € ¢ x T+,

e, = e, t) € B(el, 3). Now
63 = cp(e2, T(el) - T(ee)) = (P(e, T(el) - T(e))'

By Proposition 8, ez € B(e;, ¢). Also, T(ea) = 7(e;). Therefore
es € F(e, v(eq) =7(e)), s0 e; € Fle, T(el) - 7(e)), as required.

An event el will be said to be ¢opjugate to the event e if

e, € OR(e) N int F(e, T(e;) = T(e)), where "int" again denotes the

interior relative to the proper t-section. Note that e, can be cone-

Jjugate to e only if T(el) > 1(e).
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Example. Consider the state-time system in which X is the unit
circle with the angle 9 (mod 2m) as coordinate variable, ¢ is the
set of all functions ¢ : T - [-1, +1] that are integrable on all

*
finite intervels, and

t+t?
mle, (6, t), t']1=(6+ [ o(s)ds, t+t*).
t

Then the event e, = (m, m) 1is conjugate to the event e = (0, 0) (see
the figure).
The refinement of Proposition 7 toward which the preceding discussion

has been directed can now be stated and gquickly proved.

Boundary Decomposition Theorem. ILet C(e) be the set of events

conjugate to e. Then OR(e) is the union of the disjoint sets C(e)
and U{JF(e, t) : t 2 0}, where the symbol JdF(e, t) i1s to be interpreted

as in Proposition 7.

Proof. By Proposition 7,

U{dF(e, t) : t 2 0} C dR(e),

and by the definition of conjugate events,

c(e) C 3R(e).
Hence

(10) [U(aF(e, t) : t 2 0}] U c(e) C dR(e).

*Strictly speaking, o¢'s that differ on a set of measure zero should be
identified.
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Also by the definition of conjugate events,
(11) [U(dF(e, t) : t 20}] ncCle) = 4.

Now suppose that e. € dR(e) - C(e). By Proposition 10,

1
e, € F(e, T(él) - T(e)), where t = T(el) - 7(e) 2 0. However, since

e ¢ C(e), e; ¢ int F(e, t). Thus

e € F(e, t) - int F(e, t) = dF(e, t).
This gives
dR(e) ~ C(e) C U(dF(e, t) : t 2 0},

which, with (10) and (11), yields the desired conclusion.

8. The Generalized Jacobi Condition. The principle of optimal evolution
(Section 6) of course gives a necessary condition for optimality. The con-
cept of conjugate event makes it possible to formulate another necessary
condition which, because of its formal resemblance to the classical Jacobi
necessary condition of the calculus of variations (for example, see [4],

p. 88), I call

The Generalized Jacobi Condition. If (¢, ) 1is a solution of the

nondegenerate optimization problem (eo, Gy, J), there are no events conjugate

to e  in the set $(eo, (o, T)).

Proof. Suppose that (@, t) is a solution such that, for some

t e [0, F), e, = 5(30: t) 1is conjugate to e. Then

K




w22

e, € int F(e, 'r(el) -1(e)) = int F(e, t),

whence, by Proposition 9, there exists a & >0 such that

(12) (et e E : p(ey, e') <8 and 7T(e')z7(e)}( R(e).
Iet n satisfy 0<n<% -t and

€, =$(el: t+0)e B(el: 8);
this is possible by the continuity of ¢@. Now let Sl > 0 be such that

(13) B(e2, Bl)C B(el, 8) N{e e E : t(e) >7(ey)};

this can be done because e, belongs to the set on the right, which is

open. By (12) and (13),
B(e,, &) C R(e);

since e, ¢ (e, [0, t]), this contradicts the principle of optimal evo-
lution.
The following statement now follows from the principle of optimsl

evolution, the boundary decomposition theorem, and the result just proved.

Corollary. If (6, E) is any solution of the nondegenerate optimiza-

tion problem (eo, Gy J), ‘then cp(eo, t) e aF(eo, t) for all te [0, T).
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This proposition is parallel to the principle of optimal evolution,
but has the advantage that the necessary condition for optimality that
it embodies refers only to the situation of the moment: given a knowledge
of F(e, t), one has to look neither forward nor backward in time in order

to apply the criterion at t.
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